Source code for gensbi.models.flux1.layers

import math
from dataclasses import dataclass

import jax.numpy as jnp
from jax import Array
from einops import rearrange
from flax import nnx
from jax.typing import DTypeLike
import jax

from .math import attention, rope


[docs] class EmbedND(nnx.Module): def __init__(self, dim: int, theta: int, axes_dim: list[int]): self.dim = dim self.theta = theta self.axes_dim = axes_dim def __call__(self, ids: Array) -> Array: n_axes = ids.shape[-1] emb = jnp.concatenate( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], axis=-3, ) return jnp.expand_dims(emb, axis=1)
[docs] def timestep_embedding( t: Array, dim: int, max_period=10000, time_factor: float = 1000.0 ) -> Array: """ Generate timestep embeddings. Args: t: a 1-D Tensor of N indices, one per batch element. These may be fractional. dim: the dimension of the output. max_period: controls the minimum frequency of the embeddings. time_factor: Tensor of positional embeddings. Returns: timestep embeddings. """ t = time_factor * t half = dim // 2 freqs = jnp.exp( -math.log(max_period) * jnp.arange(start=0, stop=half, dtype=jnp.float32) / half ).astype(dtype=t.dtype) args = t[:, None].astype(jnp.float32) * freqs[None] embedding = jnp.concatenate([jnp.cos(args), jnp.sin(args)], axis=-1) if dim % 2: embedding = jnp.concatenate( [embedding, jnp.zeros_like(embedding[:, :1])], axis=-1 ) if jnp.issubdtype(t.dtype, jnp.floating): embedding = embedding.astype(t.dtype) return embedding
[docs] class MLPEmbedder(nnx.Module): def __init__( self, in_dim: int, hidden_dim: int, rngs: nnx.Rngs, param_dtype: DTypeLike = jnp.bfloat16, ): self.in_layer = nnx.Linear( in_features=in_dim, out_features=hidden_dim, use_bias=True, rngs=rngs, param_dtype=param_dtype, ) self.silu = nnx.silu self.out_layer = nnx.Linear( in_features=hidden_dim, out_features=hidden_dim, use_bias=True, rngs=rngs, param_dtype=param_dtype, ) def __call__(self, x: Array) -> Array: return self.out_layer(self.silu(self.in_layer(x)))
[docs] class QKNorm(nnx.Module): def __init__( self, dim: int, rngs: nnx.Rngs, param_dtype: DTypeLike = jnp.bfloat16, ): self.query_norm = nnx.RMSNorm(dim, rngs=rngs, param_dtype=param_dtype) self.key_norm = nnx.RMSNorm(dim, rngs=rngs, param_dtype=param_dtype) def __call__(self, q: Array, k: Array, v: Array) -> tuple[Array, Array]: q = self.query_norm(q) k = self.key_norm(k) return q, k
[docs] class SelfAttention(nnx.Module): def __init__( self, dim: int, rngs: nnx.Rngs, qkv_features: int | None = None, param_dtype: DTypeLike = jnp.bfloat16, num_heads: int = 8, qkv_bias: bool = False, ): if qkv_features is None: qkv_features = dim self.num_heads = num_heads head_dim = qkv_features // num_heads self.qkv = nnx.Linear( in_features=dim, out_features=qkv_features * 3, use_bias=qkv_bias, rngs=rngs, param_dtype=param_dtype, ) self.norm = QKNorm(dim=head_dim, rngs=rngs, param_dtype=param_dtype) self.proj = nnx.Linear( in_features=qkv_features, out_features=dim, use_bias=True, rngs=rngs, param_dtype=param_dtype, ) def __call__(self, x: Array, pe: Array, mask: Array | None = None) -> Array: qkv = self.qkv(x) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = self.norm(q, k, v) x = attention(q, k, v, pe=pe, mask=mask) x = self.proj(x) return x
[docs] @dataclass class ModulationOut: shift: Array scale: Array gate: Array
# includes AdaLN-zero initialization
[docs] class Modulation(nnx.Module): def __init__( self, dim: int, double: bool, rngs: nnx.Rngs, param_dtype: DTypeLike = jnp.bfloat16, ): self.is_double = double self.multiplier = 6 if double else 3 self.lin = nnx.Linear( in_features=dim, out_features=self.multiplier * dim, use_bias=True, rngs=rngs, param_dtype=param_dtype, kernel_init=jax.nn.initializers.zeros, # this ensures that the initial modulation is neutral bias_init=jax.nn.initializers.zeros # this ensures that the initial modulation is neutral ) def __call__(self, vec: Array) -> tuple[ModulationOut, ModulationOut | None]: out = jnp.split(self.lin(nnx.silu(vec))[:, None, :], self.multiplier, axis=-1) return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None, )
[docs] class DoubleStreamBlock(nnx.Module): def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float, rngs: nnx.Rngs, qkv_features: int | None = None, param_dtype: DTypeLike = jnp.bfloat16, qkv_bias: bool = False, ): mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.qkv_features = qkv_features if qkv_features is not None else hidden_size self.obs_mod = Modulation( dim=hidden_size, double=True, rngs=rngs, param_dtype=param_dtype ) self.obs_norm1 = nnx.LayerNorm( num_features=hidden_size, use_scale=False, use_bias=False, epsilon=1e-6, rngs=rngs, param_dtype=param_dtype, ) self.obs_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_features=self.qkv_features, qkv_bias=qkv_bias, rngs=rngs, param_dtype=param_dtype, ) self.obs_norm2 = nnx.LayerNorm( num_features=hidden_size, use_scale=False, use_bias=False, epsilon=1e-6, rngs=rngs, param_dtype=param_dtype, ) self.obs_mlp = nnx.Sequential( nnx.Linear( in_features=hidden_size, out_features=mlp_hidden_dim, use_bias=True, rngs=rngs, param_dtype=param_dtype, ), nnx.gelu, nnx.Linear( in_features=mlp_hidden_dim, out_features=hidden_size, use_bias=True, rngs=rngs, param_dtype=param_dtype, ), ) self.cond_mod = Modulation( dim=hidden_size, double=True, rngs=rngs, param_dtype=param_dtype ) self.cond_norm1 = nnx.LayerNorm( num_features=hidden_size, use_scale=False, use_bias=False, epsilon=1e-6, rngs=rngs, param_dtype=param_dtype, ) self.cond_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_features=self.qkv_features, qkv_bias=qkv_bias, rngs=rngs, param_dtype=param_dtype, ) self.cond_norm2 = nnx.LayerNorm( num_features=hidden_size, use_scale=False, use_bias=False, epsilon=1e-6, rngs=rngs, param_dtype=param_dtype, ) self.cond_mlp = nnx.Sequential( nnx.Linear( in_features=hidden_size, out_features=mlp_hidden_dim, use_bias=True, rngs=rngs, param_dtype=param_dtype, ), nnx.gelu, nnx.Linear( in_features=mlp_hidden_dim, out_features=hidden_size, use_bias=True, rngs=rngs, param_dtype=param_dtype, ), ) def __call__( self, obs: Array, cond: Array, vec: Array, pe: Array | None = None, mask: Array | None = None, ) -> tuple[Array, Array]: obs_mod1, obs_mod2 = self.obs_mod(vec) cond_mod1, cond_mod2 = self.cond_mod(vec) # prepare image for attention obs_modulated = self.obs_norm1(obs) obs_modulated = (1 + obs_mod1.scale) * obs_modulated + obs_mod1.shift obs_qkv = self.obs_attn.qkv(obs_modulated) obs_q, obs_k, obs_v = rearrange( obs_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads ) obs_q, obs_k = self.obs_attn.norm(obs_q, obs_k, obs_v) # prepare cond for attention cond_modulated = self.cond_norm1(cond) cond_modulated = (1 + cond_mod1.scale) * cond_modulated + cond_mod1.shift cond_qkv = self.cond_attn.qkv(cond_modulated) cond_q, cond_k, cond_v = rearrange( cond_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads ) cond_q, cond_k = self.cond_attn.norm(cond_q, cond_k, cond_v) # run actual attention q = jnp.concatenate((cond_q, obs_q), axis=2) k = jnp.concatenate((cond_k, obs_k), axis=2) v = jnp.concatenate((cond_v, obs_v), axis=2) attn = attention(q, k, v, pe=pe, mask=mask) cond_attn, obs_attn = attn[:, : cond.shape[1]], attn[:, cond.shape[1] :] # calculate the obs bloks obs = obs + obs_mod1.gate * self.obs_attn.proj(obs_attn) obs = obs + obs_mod2.gate * self.obs_mlp( (1 + obs_mod2.scale) * self.obs_norm2(obs) + obs_mod2.shift ) # calculate the cond bloks cond = cond + cond_mod1.gate * self.cond_attn.proj(cond_attn) cond = cond + cond_mod2.gate * self.cond_mlp( (1 + cond_mod2.scale) * self.cond_norm2(cond) + cond_mod2.shift ) return obs, cond
[docs] class SingleStreamBlock(nnx.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, rngs: nnx.Rngs, qkv_features: int | None = None, param_dtype: DTypeLike = jnp.bfloat16, mlp_ratio: float = 4.0, qk_scale: float | None = None, ): self.hidden_dim = hidden_size if qkv_features is None: self.qkv_features = hidden_size else: self.qkv_features = qkv_features self.num_heads = num_heads head_dim = qkv_features // num_heads self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) # qkv and mlp_in self.linear1 = nnx.Linear( in_features=hidden_size, out_features=self.qkv_features * 3 + self.mlp_hidden_dim, rngs=rngs, param_dtype=param_dtype, ) # proj and mlp_out self.linear2 = nnx.Linear( in_features=self.qkv_features + self.mlp_hidden_dim, out_features=hidden_size, rngs=rngs, param_dtype=param_dtype, ) self.norm = QKNorm(dim=head_dim, rngs=rngs, param_dtype=param_dtype) self.hidden_size = hidden_size self.pre_norm = nnx.LayerNorm( num_features=hidden_size, use_scale=False, use_bias=False, epsilon=1e-6, rngs=rngs, param_dtype=param_dtype, ) self.mlp_act = nnx.gelu self.modulation = Modulation( hidden_size, double=False, rngs=rngs, param_dtype=param_dtype ) def __call__( self, x: Array, vec: Array, pe: Array | None = None, mask: Array | None = None ) -> Array: mod, _ = self.modulation(vec) x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift qkv, mlp = jnp.split(self.linear1(x_mod), [3 * self.qkv_features], axis=-1) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = self.norm(q, k, v) # compute attention attn = attention(q, k, v, pe=pe, mask=mask) # compute activation in mlp stream, cat again and run second linear layer output = self.linear2(jnp.concatenate((attn, self.mlp_act(mlp)), 2)) return x + mod.gate * output
[docs] class LastLayer(nnx.Module): def __init__( self, hidden_size: int, patch_size: int, out_channels: int, rngs: nnx.Rngs, param_dtype: DTypeLike = jnp.bfloat16, ): self.norm_final = nnx.LayerNorm( num_features=hidden_size, use_scale=False, use_bias=False, epsilon=1e-6, rngs=rngs, param_dtype=param_dtype, ) self.linear = nnx.Linear( in_features=hidden_size, out_features=patch_size * patch_size * out_channels, use_bias=True, rngs=rngs, param_dtype=param_dtype, ) self.adaLN_modulation = nnx.Sequential( nnx.silu, nnx.Linear( in_features=hidden_size, out_features=2 * hidden_size, use_bias=True, rngs=rngs, param_dtype=param_dtype, ), ) def __call__(self, x: Array, vec: Array) -> Array: shift, scale = jnp.split( self.adaLN_modulation(vec), 2, axis=1, ) x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] x = self.linear(x) return x